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Abstract

Background: Multiple studies have yielded important findings regarding the determinants of 

an advanced-stage diagnosis of breast cancer. We seek to advance this line of inquiry through a 

broadened conceptual framework and accompanying statistical modeling strategy that recognize 

the dual importance of access-to-care and biologic factors on stage.

Methods: The Centers for Disease Control and Prevention–sponsored Breast and Prostate Cancer 

Data Quality and Patterns of Care Study yielded a seven-state, cancer registry–derived population­

based sample of 9,142 women diagnosed with a first primary in situ or invasive breast cancer in 

2004. The likelihood of advanced-stage cancer (American Joint Committee on Cancer IIIB, IIIC, 

or IV) was investigated through multivariable regression modeling, with base-case analyses using 

the method of instrumental variables (IV) to detect and correct for possible selection bias. The 

robustness of base-case findings was examined through extensive sensitivity analyses.

Results: Advanced-stage disease was negatively associated with detection by mammography (P 
< 0.001) and with age < 50 (P < 0.001), and positively related to black race (P = 0.07), not being 

privately insured [Medicaid (P = 0.01), Medicare (P = 0.04), uninsured (P = 0.07)], being single 

(P = 0.06), body mass index > 40 (P = 0.001), a HER2 type tumor (P < 0.001), and tumor grade 

not well differentiated (P < 0.001). This IV model detected and adjusted for significant selection 

effects associated with method of detection (P = 0.02). Sensitivity analyses generally supported 

these base-case results.

Conclusions: Through our comprehensive modeling strategy and sensitivity analyses, we 

provide new estimates of the magnitude and robustness of the determinants of advanced-stage 

breast cancer.

Impact: Statistical approaches frequently used to address observational data biases in treatment­

outcome studies can be applied similarly in analyses of the determinants of stage at diagnosis.

Introduction

An advanced-stage diagnosis of breast cancer has long been associated with significantly 

poorer survival outcomes (1). Recent data show that women diagnosed at American Joint 

Committee on Cancer (AJCC) stage I have an overall 5-year relative survival rate near 

100%, whereas the rate for those diagnosed at stage IV is 24% (2). Over two decades of 

investigations into the determinants of an advanced-stage diagnosis have yielded important 

findings.

Screening mammography has been consistently associated with earlier-stage detection of 

breast cancer, both in clinical trials (3–7) and in day-to-day practice (8–10). This is 

notwithstanding important complicating factors, including disagreement about appropriate 
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screening strategies (11, 12) and variability in mammographic test sensitivity driven by 

certain biologic factors including mammographic breast density (13–15).

There are race/ethnicity differences in breast cancer stage at diagnosis (16–30), with African 

American women significantly more likely than white women to have a late-stage diagnosis. 

Insurance status is a significant independent predictor of stage, with women who are 

uninsured or enrolled in Medicaid less likely to access screening mammography (31, 32) 

and more likely to be diagnosed at later stage (20, 21, 33–35). There is a complex interplay 

involving the presence of comorbidities, access to care, detection by mammography, and 

stage (36, 37).

Taken together, these studies have significantly contributed to our understanding of factors 

associated with an advanced stage diagnosis of breast cancer. However, there are certain 

methodological considerations, not explored to date, with potentially important implications 

for the specification of models and interpretation of findings.

First, in virtually all studies, the likelihood of an advanced-stage diagnosis has been 

analyzed through a single-equation (typically logistic) regression model in which 

explanatory variables, including method of detection, were all regarded as independent, 

exogenous predictors of stage. In reality, the detection method is not a fixed, predetermined 

variable in the same sense as the individual’s age or race/ethnicity. Rather, it can be 

regarded, as indeed it has been in the screening mammography trials, as an “exposure” 

influencing the “outcome” of stage at diagnosis.

Second, many analyses have relied heavily on cancer registry sources that do not 

routinely include several potentially important predictors of both stage and method of 

detection. Such unobserved variables may include breast density, which influences both 

mammography sensitivity (14, 15) and tumor aggressiveness (38); whether the woman 

is taking hormone replacement therapy, which may affect tumor development (39) and 

the perceived importance of regular screening; whether the woman has a family history 

of breast cancer; the nature of the woman’s health care system (e.g., managed care vs. 

fee-for-service), which may influence both screening rates and the effectiveness of follow-up 

care (40); and certain health behaviors, e.g., excess alcohol consumption (41).

Third, to the extent such unobserved variables are important predictors of both stage and 

detection method, the statistical problem of endogeneity arises: the error structures for the 

regression models predicting stage and predicting method are then correlated (because they 

contain common unobserved variables). Without corrections for such potential endogeneity, 

estimates of the impact of predictors—such as method, race/ethnicity, and insurance—on 

stage are subject to bias (42).

In this article, we bring a new conceptual framework and accompanying statistical modeling 

strategy—built primarily around the method of instrumental variables (IV; refs. 42–47)—to 

a much-analyzed question: What predicts an advanced-stage diagnosis of breast cancer? Of 

particular interest is whether findings to date regarding the impact of method of detection, 

race/ethnicity, and insurance status on stage are sustained within this expanded framework.
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Materials and Methods

Conceptual framework

Our maintained hypothesis regarding the causal factors leading to the breast cancer stage 

recorded at diagnosis (stage) is depicted in Fig. 1. Method of detection (method) plays 

a central role, and we specify two sets of variables that may influence both stage and 

method. One set contains variables associated with the woman’s access to and utilization of 

health care (e.g., insurance status). The second set consists of variables associated with the 

aggressiveness and speed of the tumor’s biologic development (e.g., grade), the sensitivity 

of detection methods (e.g., histology), or both [e.g., body mass index (BMI)]. Each set 

includes variables that, depending on the available data sources, may be observable (e.g., 

marital status) or unobservable (e.g., breast density, menopausal hormone therapy) to the 

investigator.

Empirical basis

Data sources.—The principal source of data is the Breast and Prostate Cancer Data 

Quality and Patterns of Care Study (POC-BP), funded by the National Program of Cancer 

Registries (NPCR) of the Centers for Disease Control and Prevention (CDC) and involving 

investigators affiliated with population-based registries in seven states (California, Georgia, 

Kentucky, Louisiana, North Carolina, Minnesota, and Wisconsin) and the CDC. Institutional 

Review Board approval was obtained from all participating states, academic institutions, and 

government agencies.

Over 2007 to 2009, the POC-BP sampled NPCR patients diagnosed in 2004, with 

intensive re-abstraction of medical records from hospitals and outpatient facilities (including 

pathology laboratories, radiation facilities, surgical centers, and physician offices).

Patient eligibility and selection.—Our analyses included women ≥ 20 years of age 

diagnosed in 2004 with microscopically confirmed in situ or invasive primary breast cancer 

(International Classification of Disease-Oncology, 3rd Edition, site codes C50.0-C50.9) with 

no previous cancer diagnosis and meeting other standard exclusion criteria. Cases diagnosed 

at Veterans Affairs hospitals were excluded because of data availability limitations.

Cases were selected from the NPCR registries through single-stage random sampling 

stratified by race/ethnicity in all states and by other factors that varied by state (e.g., by 

urban/rural status in Georgia). A detailed account of data collection and quality assessment 

for POC-BP has been reported (48).

Derivation of variables

Stage at diagnosis.—Patients were assigned an AJCC (Sixth Edition TNM) stage based 

on the collaborative stage algorithm in effect for 2004 diagnoses. There is wide variability 

in how previous studies have defined advanced (or late) stage of breast cancer: III or IV (24, 

27, 30); II, III, or IV (19, 21, 22, 29); IIB, III, or IV (36). In response, we defined advanced 

stage on the basis of the pattern of decline by AJCC stage in 5-year overall survival rates. 

SEER*Stat analyses (2) on cases diagnosed in 2004–2010 and followed through 2011 
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yielded these 5-year survival percentages by AJCC stage: 0 (95.4), I (91.9), IIA (86.8), IIB 

(81.9), IIIA (76.9), IIIB (54.0), IIIC (59.6), and IV (20.8). Given the sharp drop-off between 

IIIA and IIIB, we designated “advanced” stage as diagnosis at IIIB, IIIC, or IV. All others 

were diagnosed at an “earlier” stage.

Method of detection.—We defined a two-level variable, mammography and other, where 

“other” included detection by clinical breast examination (CBE), breast self-exam (BSE), or 

signs/symptoms. Each patient was assigned a detection method based on a detailed review 

of medical records at the site(s) where she received breast cancer care. The intent was to 

capture the initial detection-related event that triggered steps toward a definitive diagnosis. 

Thus, if an initial BSE led to a mammogram, which led eventually to a breast cancer 

diagnosis, the coded method of detection would be BSE; see Table 1 for more detail.

Factors associated with health care access and utilization.—These included race/

ethnicity, insurance status, comorbidity status [based on Piccirillo’s Adult Comorbidity 

Evaluation (ACE) instrument (49)], marital status, age, and several area-level variables 

constructed from 2000 US Census data: urban/rural status, poverty status, and education 

status. These categorical variables are operationally defined in Table 1.

Biologic factors associated with tumor progression and detection.—In addition 

to race/ethnicity and age, we included BMI, tumor grade, and a constructed variable “mole­

subtype” based on the patient’s combined estrogen receptor (ER), progesterone receptor 

(PR), and HER2 status and intended to approximate the molecular subtype of the breast 

tumor (50). Specifically, a patient here may be “Luminal A” (ER+ and/or PR+, HER2−), 

“Luminal B” (ER+ and/PR+, HER2+), “triple negative” (ER−, PR−, HER2−), or “HER2 

Type” (ER−, PR−, HER2+).

Statistical analyses

Predicting stage.—Our overall strategy is to compare conventional single-equation 

regression models with formulations designed to detect and correct for selection bias, 

under a variety of assumptions. Prototypically, the single-equation models will be binary 

logistic regressions with the log-odds of an advanced-stage diagnosis being a function of 

method of detection plus some combination of patient-level access/utilization factors and 

biologic factors. From the standpoint of Fig. 1, such single-equation models correspond to a 

conceptual framework that omits both arrows directed at method of detection.

To test and correct for any selection bias, our primary approach is the method of 

instrumental variables using the two-stage residual inclusion (2SRI) model (45–47, 51), 

which is especially well suited for nonlinear estimation, as here. Figure 2 is a transformation 

of Fig. 1 that depicts key aspects of our 2SRI econometric model, including the main 

observable and unobservable variables thought to be at play. To execute the 2SRI model, 

one estimates a first-stage regression in which the likelihood the patient receives the 

“intervention” (here, mammography) is a function of all observable predictors posited 

to influence the patient’s “outcome” (here, advanced vs. earlier stage) plus instrumental 

variable(s), hypothesized to influence the patient’s selection into intervention but not her 
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outcome (except through their impact on choice of intervention). In the second-stage 

regression, the likelihood of advanced stage becomes a function of method of detection, 

the hypothesized access/utilization factors and biologic factors, and a variable consisting 

of the residuals computed from the first-stage regression and intended to both indicate the 

degree of selection bias and correct for it (42, 46).

Because the residual is a computed variable, thereby reflecting sampling error, we employed 

bootstrapping (100 iterations) to upwardly adjust the standard errors of coefficient estimates 

in the second-stage regression.

The IVs deployed here are seen in Fig. 2 and discussed further in Table 2: the patient’s state 

of residence [mammography rates vary across the seven states, reflecting an underlying 

geographic variability in screening uptake (52)]; histology [because mammography is 

less sensitive for lobular tumors (52), while histology itself is posited not to be an 

important predictor of tumor aggressiveness after adjusting for other biologic variables]; 

and a constructed variable, mammography-capacity, indexing a woman’s physical access 

to mammography in her county of residence. Because of state-imposed confidentiality 

requirements, mammography-capacity could not be computed for Minnesota.

The strength of the IVs is indexed by the magnitude of the F-statistic for the null they are 

jointly 0 in the first-stage regression; a frequently used, if informal, benchmark is that F ≥ 10 

(42, 53).

Additional statistical considerations.—For three predictor variables with substantial 

missing observations among the cases potentially available for analysis—mole-subtype 

(29.8%), BMI (22.0%), and grade (8.6%)—we used multiple imputation (MI) to assign 

values (54, 55). (No other variable was missing more than 3%, and most were missing 

under 1%.) When MI was applied to the 2SRI models, standard errors were constructed to 

reflect the sampling variability arising from both the computed residuals and the imputation 

process; see Supplementary Materials (Section A).

In regressions using data from single-stage sampling, where the weights are a function 

of predictor variables (here, for example, race–ethnicity), using sample weights can, at a 

minimum, reduce statistical precision (56); consequently, we did not weight the data in the 

base-case.

With binary logistic regression used throughout, our complementary measures of model 

performance are the coefficient of concordance (c-statistic) and the Hosmer–Lemeshow 

(H-L) goodness-of-fit test statistic (57). H-L indexes how well predicted and observed event 

rates (here advanced-stage) match up in subgroups (typically deciles) of the sample; the 

closer the match, the higher the P value.

Regression results are expressed as adjusted ORs with corresponding 95% confidence 

intervals; P values are two-sided, with P ≤ 0.05 as a benchmark for appraising statistical 

importance. Analyses used Stata, version 13.0 (Stata Corporation), and SAS, version 9.2 

(SAS Institute, Cary, NC).
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Base-case model specification.—In summary, our base-case regression model for 

stage at diagnosis was a 2SRI specification estimated (1) without sample weights; (2) 

with missing values imputed for BMI, grade, and mole-subtype (but not other predictors); 

and (3) with the IV mammography-capacity included. As detailed below, we conducted 

extensive sensitivity analyses, including propensity score weighting as an alternative to IV 

for selection bias reduction (58–62).

Results

Descriptive and bivariate analyses

From a total 11,643 qualifying breast cancer cases, re-abstraction was successfully 

completed on 9,142. Among these, 212 were not assigned an AJCC stage, and 230 

additional patients were missing information on method of detection. Hence, 8,700 cases 

were potentially available for analysis (because, following standard practice, we did not 

apply MI to our two dependent variables, stage and method). Under base-case modeling 

assumptions (which exclude Minnesota), the corresponding sample has 7,503 patients. 

Among these, 762 (10.2%) were diagnosed at advanced stage (Table 1), and 3,718 (49.6%) 

cases overall were detected by mammography (Table 2).

For most predictor variables in Table 1, there were notable differences in the distribution 

of patients between advanced versus earlier stage at each level of the variable, and the 

corresponding unadjusted ORs from the binary logistic regression of the variable on 

stage were significant at P < 0.05 in most cases. For example, among those detected by 

mammography, only 2.6% were at advanced stage, whereas for those detected by some other 

method, 17.6% were advanced stage; the unadjusted OR for detection by mammography (vs. 

other method) being associated with advanced stage was 0.13 (P < 0.001).

Table 2 presents a parallel summary of information for the IVs. Of prime interest is 

the association between each IV and the likelihood of detection by mammography. For 

histology and mammography-capacity, the unadjusted ORs were significant, in the expected 

directions; although the state variable was not as strongly associated with method, we 

elected to retain it as an IV, given a priori expectations about geographic variations in 

screening practices.

Inferences from first-stage regression in 2SRI model

The motivating purpose of the first-stage regression is to derive the “Method of Detection 

Bias Correction Factor” (Fig. 2)—that is, a variable consisting of that model’s residuals 

which then enters the second-stage regression for stage. Regarding the statistical strength of 

the IVs, the F statistic (8 df) for the null that state, histology, and mammography-capacity 

are jointly noninfluential was 105.7 (P < 0.001), well above the benchmark of F ≥ 10. This 

estimated first-stage model is discussed in Supplementary Materials (Section B).

Base-case model for determinants of advanced-stage disease

The right-hand portion of Table 3 displays the estimated second-stage regression for the 

base-case 2SRI model. The likelihood of an advanced-stage diagnosis is strongly negatively 
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related to detection by mammography (OR = 0.04; P < 0.001). Of note, the first-stage 

residual is significantly positive (OR = 3.89; P < 0.02), consistent with selection bias in the 

“allocation” of women to mammography versus other.

Advanced stage was positively associated with being black (OR = 1.16; P = 0.07); not being 

privately insured, with Medicaid (OR = 1.48; P = 0.01) and Medicare (OR = 1.29; P = 0.04), 

and being uninsured (OR = 1.60; P = 0.07); being single (OR = 1.28; P = 0.06); having BMI 

≥ 40 (OR = 1.62; P = 0.001); having a tumor of HER2 Type (OR = 1.40; P < 0.001); and 

having tumor grade that is moderately differentiated (OR = 2.36; P < 0.001) or else poorly 

or undifferentiated (OR = 3.91; P < 0.001). Advanced stage was negatively related to being 

diagnosed at age < 40 (OR = 0.48; P = 0.001) or between ages 40 and 49 (OR = 0.57; P < 

0.001).

Results from the corresponding single-equation multivariable regression are in the left-hand 

portion of Table 3. Notwithstanding the significant bias correction term in the 2SRI model, 

there was general concordance in findings from the two models. The models had comparable 

within-sample predictive ability (c = 0.797 and 0.796), though the 2SRI model had a notably 

better HL statistic (P = 0.88 vs. 0.53).

Sensitivity analyses around the base-case

Multiple model variants were analyzed where, in each case, we altered one key base-case 

provision while retaining the others; see Supplementary Tables S1–S6 in Supplementary 

Materials (Section D). These variants included models that (i) excluded the biologic 

variables associated with tumor progression (Supplementary Table S1); (ii) did not 

impute missing values (Supplementary Table S2); (iii) did employ the sample weights 

(Supplementary Table S3); (iv) excluded the IV mammography-capacity and thus included 

the Minnesota observations (Supplementary Table S4); and (v) used propensity score 

weighting as an alternative bias-reduction technique (Supplementary Table S5). For further 

appraisal of these estimated propensity score models, see Supplementary Table S6 and 

Supplementary Materials (Section C).

Overall, the findings from Supplementary Tables S1–S5 are broadly in tune with Table 3, but 

there are some notable differences, as discussed below.

Discussion

Guided by a new conceptual framework and statistical modeling strategy, this article re­

examines a much-investigated question: What predicts an advanced-stage diagnosis of breast 

cancer?

We found that detection by mammography is significantly negatively related to an advanced­

stage diagnosis. Across all multivariable single-equation and propensity score–adjusted 

models, the OR (mammography vs. other) for advanced stage ranged narrowly from 0.13 

to 0.15. Across the IV models, there was a consistent pattern: this adjusted OR was in 

the (much lower) 0.03–0.05 range, whereas the OR for the residual predictor variable—

indicating the magnitude of selection bias—was in the 2.73–6.92 range. An OR > 1 implies 
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a positive relationship between the algebraic sign of the residuals and the likelihood of 

advanced stage. We posit this reflects the fact (Table 1) that over half of all tumors were 

detected by some other method, thus generating negative residuals from the first-stage 

regression, and that over 82% of these were earlier stage. In effect, the estimated 2SRI 

model appropriately down-weighted the credit given to other methods for “detecting” earlier 

stage tumors.

In interpreting these results, it is noteworthy that relatively few studies have examined the 

impact of method of detection on stage at diagnosis (as opposed to the more common 

scenario of examining the relationship between observed or reported screening behavior on 

stage). Analyzing data from three screening trials, Shen and colleagues (63) found a “clear 

shift toward earlier stage” in cancers detected by mammography. This is in line with results 

reported by Malmgren and colleagues (9) from a prospective cohort study of women aged 40 

to 49 diagnosed across 1990–2008, from a Wisconsin study of cases diagnosed across 1987–

1990 (64), and from a 2001–2003 study of cases diagnosed in Detroit and Los Angeles (23).

Because we cannot observe in the POC-BP data the actual frequency and timing of a 

woman’s screening mammography (or her CBE or BSE), the method of detection variable 

is not a direct measure of the effectiveness of mammography (or CBE or BSE) in 

averting an advanced-stage breast cancer. Thus, we cannot know for sure that a tumor 

diagnosed at advanced stage by other methods would have been found at an earlier stage 

if the woman had been getting regular mammograms. It is possible that she had been 

receiving mammography (at some rate), and a small but aggressive tumor was missed and 

subsequently emerged as an “interval” cancer of advanced stage. One role of the method of 

detection variable here is to account for the net influence of these unobserved (in our data) 

screening behaviors on stage at diagnosis. Further discussion about the role of the method 

of detection variable in these analyses, and its interpretation, can be found in Supplementary 

Materials (Section E).

Race–ethnicity

The associations of race/ethnicity with stage within 12 alternative predictive models 

(including the base-case and Supplementary Tables S1–S5) are explored further in Table 

4, with several implications. First, while Hispanics and Asian/Pacific Islanders (API), but 

not blacks, were significantly less likely to be detected by mammography than whites 

(Supplementary Materials, Section B), the only significant race/ethnicity difference in stage 

was between black and white women. Second, the odds of blacks being diagnosed at a later 

stage than whites varied across models 1 to 12 in the following general way: the richer the 

set of included covariates, the less influential was the race/ethnicity variable.

This pattern of findings underscores that the estimated magnitude of a race/ethnicity effect 

depends on the overall maintained hypothesis embodied in the chosen statistical model for 

stage. That said, a significant black–white difference in breast cancer stage at diagnosis has 

been reported almost without exception in US studies to date (16–29). Some studies have 

found that black–white differences are significantly reduced after accounting for screening 

history (22–24), while others have not (25, 29). We conclude that a black–white difference 
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in stage is a robust finding, but one whose magnitude and interpretation can vary across data 

sources, study designs, time frames, and geographic settings.

Insurance

Across the models in Table 4, the trend is clear: women without private insurance were 

significantly more likely to be diagnosed at advanced stage. Being uninsured had the 

greatest adverse impact, followed by having Medicaid, and then Medicare.

These findings generally align with earlier estimates (20, 21, 33–35). However, among the 

privately insured, we could not distinguish fee-for-service and managed care, and there may 

be a differential impact of coverage regime on method of detection and stage (65, 66). 

Overall, the likely route by which insurance influences stage is to increase the likelihood 

of detection by mammography (32); in parallel, insurance may increase the odds of timely 

diagnosis and treatment following a positive screen (8, 40, 67). Not directly accounted 

for here is whether the woman had a regular source of health care or received a provider 

recommendation for screening (8, 40).

Comorbidity

Patients with severe comorbidity were much less likely to be detected by mammography 

(Supplementary Materials, Section B) and significantly more likely to be diagnosed 

at advanced stage in our single-equation models; however, while OR > 1 for severe 

comorbidity in all 2SRI models, it was generally not significant. As Fleming and colleagues 

(36) note, the consolidation of multiple comorbid conditions into a single metric, such as 

the ACE-27, may hide antagonistic effects of individual comorbidities on either screening or 

advanced stage (36). Yasmeen and colleagues (37) found that comorbidities were positively 

associated with mammography use and also with an advanced-stage diagnosis among 

women who were screened most frequently.

Socioeconomic factors

While lower SES has been associated with late-stage breast cancer diagnosis in several 

studies (68–70), the only significant effect here was that single women were generally 

at higher risk to advanced stage than married women. The area-level variables indexing 

education, poverty, and urban-rural status were not significant in any model variant.

Biologic factors

Variables hypothesized to be associated with the aggressiveness and speed of tumor 

development generally performed as expected. Across models (see Table 3 and 

Supplementary Tables S1–S5), advanced stage was positively related to whether the tumor 

was HER2 Type, the tumor grade was not well differentiated, and the woman was morbidly 

obese (BMI ≥ 40); advanced stage was negatively associated with a diagnosis under age 

50. While women with triple-negative disease were significantly less likely to be detected 

by mammography (Supplementary Materials, Section B), triple-negative status was not 

independently associated with an advanced-stage diagnosis in any model. As indicated in 

Fig. 2, a potentially important variable here not available in the POC-BP data set was breast 

density.

Lipscomb et al. Page 10

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although the joint impact of these factors on stage-at-diagnosis has not been previously 

evaluated, earlier studies support portions of our findings. For example, Kerlikowske 

and colleagues (71) found that screen-detected cancers were higher among overweight/

obese women, whereas rates of advanced-stage diagnosis increased across BMI groups, 

controlling for mammography use; however, an earlier study did not find a connection 

between BMI and stage for screen-detected cancers (64). The complex interplay involving 

hormonal status, postmenopausal hormone use, age, menopause, BMI, mammography use 

and sensitivity, and stage remains a ripe topic for investigation (15, 39, 71–77).

Concluding observations

In recent years, observational studies have examined the impact of various factors on breast 

cancer stage at diagnosis: method of detection (9); race, ethnicity, and socioeconomic 

variables (23); and biomedical variables such as BMI (72). This article adopts the 

perspective that the most conceptually and statistically defensible approach to understanding 

the influence of each such factor is to study them in concert (Figs. 1 and 2).

Overall, our findings about the determinants of advanced-stage align with those reported 

variously over the past two decades. What this study does provide, through its 

comprehensive modeling strategy and multiple sensitivity analyses, are new—and we think 

better grounded—estimates of the magnitude and statistical robustness of these posited 

predictors for stage.

What is needed going forward are continuing efforts to expand the empirical base so that the 

influence of potentially important unobservables (e.g., behavioral risk factors, health system 

effects, clinical variables not routinely collected in population-based studies) can be gauged 

in the context of an ever-more-richly specified model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Breast cancer stage at diagnosis: conceptual framework.
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Figure 2. 
Conceptualizing the statistical analysis of the determinants of stage: transforming the 

framework to reflect estimation via 2SRI IV model.
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